Embeddings of C(K) spaces into C(S,X) spaces with distortion strictly less than 3
In the spirit of the classical Banach-Stone theorem, we prove that if K and S are intervals of ordinals and X is a Banach space having non-trivial cotype, then the existence of an isomorphism T from C(K, X) onto C(S,X) with distortion strictly less than 3 implies that some finite topological sum of K is homeomorphic to some finite topological sum of S. Moreover, if Xⁿ contains no subspace isomorphic to for every n ∈ ℕ, then K is homeomorphic to S. In other words, we obtain a vector-valued Banach-Stone...