On the representation of Orlicz lattices
It is shown that every uncountable symmetric basic set in an F-space with a symmetric basis is equivalent to a basic set generated by one vector. We apply this result to investigate the structure of uncountable symmetric basic sets in Orlicz and Lorentz spaces.
Let X be an arbitrary set, and γ: X × X → ℝ any function. Let Φ be a family of real-valued functions defined on X. Let be a cyclic -monotone multifunction with non-empty values. It is shown that the following generalization of the Rockafellar theorem holds. There is a function f: X → ℝ such that Γ is contained in the -subdifferential of f, .
In this note we prove that there exists a Carathéodory vector lattice such that and . This yields that is a solution of the Schröder-Bernstein problem for Carathéodory vector lattices. We also show that no Carathéodory Banach lattice is a solution of the Schröder-Bernstein problem.
A generalized concept of sign is introduced in the context of Colombeau algebras. It extends the sign of the point-value in the case of sufficiently regular functions. This concept of generalized sign is then used to characterize the entropy condition for discontinuous solutions of scalar conservation laws.