The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
180 of
444
This is a survey article about a theory of a Poisson boundary associated with a discrete quantum group. The main problem of the theory, that is, the identification problem is explained and solved for some examples.
Let X be a Banach space with a basis. We prove that X is reflexive if and only if every power-bounded linear operator T satisfies Browder’s equality
= (I-T)XWe then deduce that X (with a basis) is reflexive if and only if every strongly continuous bounded semigroup with generator A satisfies
.
The range (I-T)X (respectively, AX for continuous time) is the space of x ∈ X for which Poisson’s equation (I-T)y = x (Ay = x in continuous time) has a solution y ∈ X; the above equalities for the ranges...
A new proof is obtained to the following fact: a Rickart C*-algebra satisfies polar decomposition. Equivalently, matrix algebras over a Rickart C*-algebra are also Rickart C*-algebras.
The aim of this survey article is to show certain questions concerning nuclear spaces and linear operators in normed spaces lead to questions from geometry of numbers.
Using partial derivatives and , we introduce Besov spaces of polyanalytic functions in the open unit disk, as well as in the upper half-plane. We then prove that the dilatations of functions in certain weighted polyanalytic Besov spaces converge to the same functions in norm. When restricted to the open unit disk, we prove that each polyanalytic function of degree can be approximated in norm by polyanalytic polynomials of degree at most .
We prove several results concerning density of , behaviour at infinity and integral representations for elements of the space .
The polynomial functions on a projective space over a field = ℝ, ℂ or ℍ come from the corresponding sphere via the Hopf fibration. The main theorem states that every polynomial function ϕ(x) of degree d is a linear combination of “elementary” functions .
We point out relations between the injective complexification of a real Banach space and polynomial inequalities. In particular we prove a generalization of a classical Szegő inequality to the case of polynomial mappings between Banach spaces. As an application we observe a complex version of known Bernstein-Szegő type inequalities.
We consider the multiplicative algebra P(𝒢₊') of continuous scalar polynomials on the space 𝒢₊' of Roumieu ultradistributions on [0,∞) as well as its strong dual P'(𝒢₊'). The algebra P(𝒢₊') is densely embedded into P'(𝒢₊') and the operation of multiplication possesses a unique extension to P'(𝒢₊'), that is, P'(𝒢₊') is also an algebra. The operation of differentiation on these algebras is investigated. The polynomially extended Laplace transformation and its connections with the differentiation...
We consider a continuous derivation D on a Banach algebra 𝓐 such that p(D) is a compact operator for some polynomial p. It is shown that either 𝓐 has a nonzero finite-dimensional ideal not contained in the radical rad(𝓐) of 𝓐 or there exists another polynomial p̃ such that p̃(D) maps 𝓐 into rad(𝓐). A special case where Dⁿ is compact is discussed in greater detail.
Currently displaying 161 –
180 of
444