The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1881 –
1900 of
1952
Let be a completely regular Hausdorff space, a boundedly complete vector lattice, the space of all, bounded, real-valued continuous functions on , the algebra generated by the zero-sets of , and a positive linear map. First we give a new proof that extends to a unique, finitely additive measure such that is inner regular by zero-sets and outer regular by cozero sets. Then some order-convergence theorems about nets of -valued finitely additive measures on are proved, which extend...
We study order convexity and concavity of quasi-Banach Lorentz spaces , where 0 < p < ∞ and w is a locally integrable positive weight function. We show first that contains an order isomorphic copy of . We then present complete criteria for lattice convexity and concavity as well as for upper and lower estimates for . We conclude with a characterization of the type and cotype of in the case when is a normable space.
Let I = (0,∞) with the usual topology. For x,y ∈ I, we define xy = max(x,y). Then I becomes a locally compact commutative topological semigroup. The Banach space L¹(I) of all Lebesgue integrable functions on I becomes a commutative semisimple Banach algebra with order convolution as multiplication. A bounded linear operator T on L¹(I) is called a multiplier of L¹(I) if T(f*g) = f*Tg for all f,g ∈ L¹(I). The space of multipliers of L¹(I) was determined by Johnson and Lahr. Let X be a Banach space...
Let be a compact space and let be the Banach lattice of real-valued continuous functions on . We establish eleven conditions equivalent to the strong compactness of the order interval in , including the following ones: (i) consists of isolated points of ; (ii) is pointwise compact; (iii) is weakly compact; (iv) the strong topology and that of pointwise convergence coincide on ; (v) the strong and weak topologies coincide on .
Moreover, the weak topology and that of pointwise convergence...
The classical theorems of Banach and Stone (1932, 1937), Gelfand and Kolmogorov (1939) and Kaplansky (1947) show that a compact Hausdorff space X is uniquely determined by the linear isometric structure, the algebraic structure, and the lattice structure, respectively, of the space C(X). In this paper, it is shown that for rather general subspaces A(X) and A(Y) of C(X) and C(Y), respectively, any linear bijection T: A(X) → A(Y) such that f ≥ 0 if and only if Tf ≥ 0 gives rise to a homeomorphism...
In earlier papers we have introduced and studied a new notion of positivity in operator algebras, with an eye to extending certain C*-algebraic results and theories to more general algebras. Here we continue to develop this positivity and its associated ordering, proving many foundational facts. We also give many applications, for example to noncommutative topology, noncommutative peak sets, lifting problems, peak interpolation, approximate identities, and to order relations between an operator...
Let E be an ideal of L⁰ over a σ-finite measure space (Ω,Σ,μ). For a real Banach space let E(X) be a subspace of the space L⁰(X) of μ-equivalence classes of strongly Σ-measurable functions f: Ω → X and consisting of all those f ∈ L⁰(X) for which the scalar function belongs to E. Let E(X)˜ stand for the order dual of E(X). For u ∈ E⁺ let stand for the order interval in E(X). For a real Banach space a linear operator T: E(X) → Y is said to be order-bounded whenever for each u ∈ E⁺ the set...
Let f, g be in the analytic function ring Hol(𝔻) over the unit disk 𝔻. We say that f ⪯ g if there exist M > 0 and 0 < r < 1 such that |f(z)| ≤ M|g(z)| whenever r < |z| < 1. Let X be a Hilbert space contained in Hol(𝔻). Then X is called an ordered Hilbert space if f ⪯ g and g ∈ X imply f ∈ X. In this note, we mainly study the connection between an ordered analytic Hilbert space and its reproducing kernel. We also consider when an invariant subspace of the whole space X is similar...
For a continuous map T of a compact metrizable space X with finite topological entropy, the order of accumulation of entropy of T is a countable ordinal that arises in the context of entropy structures and symbolic extensions. We show that every countable ordinal is realized as the order of accumulation of some dynamical system. Our proof relies on functional analysis of metrizable Choquet simplices and a realization theorem of Downarowicz and Serafin. Further, if M is a metrizable Choquet simplex,...
Let and be algebras of subsets of a set with , and denote by the set of all quasi-measure extensions of a given quasi-measure on to . We show that is order bounded if and only if it is contained in a principal ideal in if and only if it is weakly compact and is contained in a principal ideal in . We also establish some criteria for the coincidence of the ideals, in , generated by and .
We study the c₀-content of a seminormalized basic sequence (χₙ) in a Banach space, by the use of ordinal indices (taking values up to ω₁) that determine dichotomies at every ordinal stage, based on the Ramsey-type principle for every countable ordinal, obtained earlier by the author. We introduce two such indices, the c₀-index and the semibounded completeness index , and we examine their relationship. The countable ordinal values that these indices can take are always of the form . These results...
Currently displaying 1881 –
1900 of
1952