The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The equivalence of the two following properties is proved for every Banach lattice :1) is weakly sequentially complete.2) Every -Borel measurable linear functional on is -continuous.
In this paper, we give some necessary and sufficient conditions such that each positive operator between two Banach lattices is weak almost Dunford-Pettis, and we derive some interesting results about the weak Dunford-Pettis property in Banach lattices.
The completion of a Suslin tree is shown to be a consistent example of a Corson compact L-space when endowed with the coarse wedge topology. The example has the further properties of being zero-dimensional and monotonically normal.
Distance metrics are at the core of many processing and machine learning algorithms. In many contexts, it is useful to compute the distance between data using multiple criteria. This naturally leads to consider vector-valued metrics, in which the distance is no longer a real positive number but a vector. In this paper, we propose a principled way to combine several metrics into either a scalar-valued or vector-valued metric. We illustrate our framework by reformulating the popular structural similarity...
We generalize a Theorem of Koldunov [2] and prove that a disjointness proserving quasi-linear operator between Resz spaces has the Hammerstein property.
The present paper is devoted to some applications of the notion of L-Dunford-Pettis sets to several classes of operators on Banach lattices. More precisely, we establish some characterizations of weak Dunford-Pettis, Dunford-Pettis completely continuous, and weak almost Dunford-Pettis operators. Next, we study the relationships between L-Dunford-Pettis, and Dunford-Pettis (relatively compact) sets in topological dual Banach spaces.
Let be an Archimedean Riesz space with a weak order unit . A sufficient condition under which Dedekind [-]completeness of the principal ideal can be lifted to is given (Lemma). This yields a concise proof of two theorems of Luxemburg and Zaanen concerning projection properties of -spaces. Similar results are obtained for the Riesz spaces , , of all functions of the th Baire class on a metric space .
Currently displaying 1 –
20 of
30