The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
338
We analyse several examples of separable Banach spaces, some of them new, and relate them to several dichotomies obtained in [11],by classifying them according to which side of the dichotomies they fall.
We give biorthogonal system characterizations of Banach spaces that fail the Dunford-Pettis property, contain an isomorphic copy of c₀, or fail the hereditary Dunford-Pettis property. We combine this with previous results to show that each infinite-dimensional Banach space has one of three types of biorthogonal systems.
For two Banach spaces X and Y, we write if X embeds into Y and vice versa; then we say that X and Y have the same linear dimension. In this paper, we consider classes of Banach spaces with symmetric bases. We say that such a class ℱ has the Cantor-Bernstein property if for every X,Y ∈ ℱ the condition implies the respective bases (of X and Y) are equivalent, and hence the spaces X and Y are isomorphic. We prove (Theorems 3.1, 3.3, 3.5) that the class of Orlicz sequence spaces generated by regularly...
Two Banach spaces X and Y are symmetrically complemented in each other if there exists a supplement of Y in X which is isomorphic to some supplement of X in Y. In 1996, W. T. Gowers solved the Schroeder-Bernstein (or Cantor-Bernstein) Problem for Banach spaces by constructing two non-isomorphic Banach spaces which are symmetrically complemented in each other. In this paper, we show how to modify such a symmetry in order to ensure that X is isomorphic to Y. To do this, first we introduce the notion...
We give an intrinsic characterisation of the separable reflexive Banach spaces that embed into separable reflexive spaces with an unconditional basis all of whose normalised block sequences with the same growth rate are equivalent. This uses methods of E. Odell and T. Schlumprecht.
Let M₁ and M₂ be N-functions. We establish some combinatorial inequalities and show that the product spaces are uniformly isomorphic to subspaces of L₁ if M₁ and M₂ are “separated” by a function , 1 < r < 2.
We study compactness and related topological properties in the space L¹(m) of a Banach space valued measure m when the natural topologies associated to convergence of vector valued integrals are considered. The resulting topological spaces are shown to be angelic and the relationship of compactness and equi-integrability is explored. A natural norming subset of the dual unit ball of L¹(m) appears in our discussion and we study when it is a boundary. The (almost) complete continuity of the integration...
For the complex interpolation functors associated with derivatives of analytic functions, the Calderón fundamental inequality is formulated in both additive and multiplicative forms; discretization, reiteration, the Calderón-Lozanovskiĭ construction for Banach lattices, and the Aronszajn-Gagliardo construction concerning minimality and maximality are presented. These more general complex interpolation functors are closely connected with the real and other interpolation functors via function parameters...
The notion of a compressible operator on a Banach space, E, derives from automatic continuity arguments. It is related to the notion of a cartesian Banach space. The compressible operators on E form an ideal in ℬ(E) and the automatic continuity proofs depend on showing that this ideal is large. In particular, it is shown that each weakly compact operator on the James' space, J, is compressible, whence it follows that all homomorphisms from ℬ(J) are continuous.
Every separable nonreflexive Banach space admits an equivalent norm such that the set of the weak-extreme points of the unit ball is discrete.
Approximation and rigidity properties in renorming constructions are characterized with some classes of simple maps. Those maps describe continuity properties up to a countable partition. The construction of such kind of maps can be done with ideas from the First Lebesgue Theorem. We present new results on the relationship between Kadec and locally uniformly rotund renormability as well as characterizations of the last one with the simple maps used here.
Let (Ω,Σ,μ) be a complete finite measure space and X a Banach space. We show that the space of all weakly μ-measurable (classes of scalarly equivalent) X-valued Pettis integrable functions with integrals of finite variation, equipped with the variation norm, contains a copy of if and only if X does.
Currently displaying 61 –
80 of
338