The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 481 –
500 of
1095
If ξ is a countable ordinal and (fk) a sequence of real-valued
functions we define the repeated averages of order ξ of (fk). By using a
partition theorem of Nash-Williams for families of finite subsets of positive
integers it is proved that if ξ is a countable ordinal then every sequence
(fk) of real-valued functions has a subsequence (f'k) such that either every
sequence of repeated averages of order ξ of (f'k) converges uniformly to zero
or no sequence of repeated averages of order ξ of (f'k)...
A Banach space X is an M-ideal in its bidual if the relation ||f + w|| = ||f|| + ||w||holds for every f in X* and every w in X ⊥.The class of the Banach spaces which are M-ideals in their biduals, in short, the class of M-embedded spaces, has been carefully investigated, in particular by A. Lima, G. Godefroy and the West Berlin School. The spaces c0(I) -I any set- equipped with their canonical norm belong to this class, which also contains e.g. certain spaces K(E,F) of compact operators between...
The paper begins with a self-contained and short development of Bárány’s theorems of Carathéodory and Helly type in finite-dimensional spaces together with some new variants. In the second half the possible generalizations of these results to arbitrary Banach spaces are investigated. The Carathéodory-Bárány theorem has a counterpart in arbitrary dimensions under suitable uniform compactness or uniform boundedness conditions. The proper generalization of the Helly-Bárány theorem reads as follows:...
Criteria for compactly locally uniformly rotund points in Orlicz spaces are given.
Let X be a complex Banach space and let Bloch(X) denote the space of X-valued analytic functions on the unit disc such that . A sequence (Tₙ)ₙ of bounded operators between two Banach spaces X and Y is said to be an operator-valued multiplier between Bloch(X) and ℓ₁(Y) if the map defines a bounded linear operator from Bloch(X) into ℓ₁(Y). It is shown that if X is a Hilbert space then (Tₙ)ₙ is a multiplier from Bloch(X) into ℓ₁(Y) if and only if . Several results about Taylor coefficients of vector-valued...
We prove a conjecture of Wojtaszczyk that for 1 ≤ p < ∞, p ≠ 2, does not admit any norm one projections with dimension of the range finite and greater than 1. This implies in particular that for 1 ≤ p < ∞, p ≠ 2, does not admit a Schauder basis with constant one.
It is proved that a separable Banach space X admits a representation as a sum (not necessarily direct) of two infinite-codimensional closed subspaces and if and only if it admits a representation as a sum (not necessarily direct) of two infinite-codimensional operator ranges. Suppose that a separable Banach space X admits a representation as above. Then it admits a representation such that neither of the operator ranges , contains an infinite-dimensional closed subspace if and only...
We prove that if X is an infinite-dimensional Banach space with smooth partitions of unity then X and X∖ K are diffeomorphic for every weakly compact set K ⊂ X.
Currently displaying 481 –
500 of
1095