The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
114 of
114
We show that a Banach space constructed by Bourgain-Delbaen in 1980 answers a question put by Feder in 1982 about spaces of compact operators.
*Supported by the Grants AV ˇCR 101-97-02, 101-90-03, GA ˇCR 201-98-1449, and by the
Grant of the Faculty of Civil Engineering of the Czech Technical University No. 2003.We further develop the theory of the so called Asplund functions,
recently introduced and studied by W. K. Tang. Let f be an Asplund
function on a Banach space X. We prove that (i) the subspace
Y := sp ∂f(X) has a projectional resolution of the identity, and that (ii) if
X is weakly Lindel¨of determined, then X admits a projectional...
Let X be an infinite-dimensional complex normed space, and let B and S be its closed unit ball and unit sphere, respectively. We prove that the identity map on B can be expressed as an average of three uniformly retractions of B onto S. Moreover, for every 0≤ r < 1, the three retractions are Lipschitz on rB. We also show that a stronger version where the retractions are required to be Lipschitz does not hold.
Currently displaying 101 –
114 of
114