The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A sufficient and necessary condition for weak convergence of sequences in a class of Banach sequence lattices is obtained. As a direct application, a complete criterion of a weak convergence of sequences in l infinity is formulated.
In this paper, we give necessary and sufficient conditions for a point in a Musielak-Orlicz sequence space equipped with the Orlicz norm to be an H-point. We give necessary and sufficient conditions for a Musielak-Orlicz sequence space equipped with the Orlicz norm to have the Kadec-Klee property, the uniform Kadec-Klee property and to be nearly uniformly convex. We show that a Musielak-Orlicz sequence space equipped with the Orlicz norm has the fixed point property if and only if it is reflexive....
It is known that a Banach lattice with order continuous norm contains a copy of if and only if it contains a lattice copy of . The purpose of this note is to present a more direct proof of this useful fact, which extends a similar theorem due to R.C. James for Banach spaces with unconditional bases, and complements the - and -cases considered by Lozanovskii, Mekler and Meyer-Nieberg.
Let (S, ∑, m) be any atomless finite measure space, and X any Banach space containing a copy of . Then the Bochner space is uncomplemented in ccabv(∑,m;X), the Banach space of all m-continuous vector measures that are of bounded variation and have a relatively compact range; and ccabv(∑,m;X) is uncomplemented in cabv(∑,m;X). It is conjectured that this should generalize to all Banach spaces X without the Radon-Nikodym property.
A characterization of property of an arbitrary Banach space is given. Next it is proved that the Orlicz-Bochner sequence space has the property if and only if both spaces and have it also. In particular the Lebesgue-Bochner sequence space has the property iff has the property . As a corollary we also obtain a theorem proved directly in [5] which states that in Orlicz sequence spaces equipped with the Luxemburg norm the property , nearly uniform convexity, the drop property and...
Currently displaying 1 –
11 of
11