The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
On s’intéresse à la résolution du système de Navier-Stokes incompressible à densité variable dans le demi-espace en dimension On considère des données initiales à régularité critique. On établit que si la densité initiale est proche d’une constante strictement positive dans et si la vitesse initiale est petite par rapport à la viscosité dans l’espace de Besov homogène alors le système de Navier-Stokes admet une unique solution globale. La démonstration repose sur de nouvelles estimations...
We use the Calderón Maximal Function to prove the Kato-Ponce Product Rule Estimate and the Christ-Weinstein Chain Rule Estimate for the Hajłasz gradient on doubling measure metric spaces.
Let n ≥ 2 and , where
,
, , k < n. We prove that for some s,s’ the space is a multiplicative algebra.
Currently displaying 21 –
30 of
30