Displaying 261 – 280 of 388

Showing per page

Positive vector measures with given marginals

Surjit Singh Khurana (2006)

Czechoslovak Mathematical Journal

Suppose E is an ordered locally convex space, X 1 and X 2 Hausdorff completely regular spaces and Q a uniformly bounded, convex and closed subset of M t + ( X 1 × X 2 , E ) . For i = 1 , 2 , let μ i M t + ( X i , E ) . Then, under some topological and order conditions on E , necessary and sufficient conditions are established for the existence of an element in Q , having marginals μ 1 and μ 2 .

Product of vector measures on topological spaces

Surjit Singh Khurana (2008)

Commentationes Mathematicae Universitatis Carolinae

For i = ( 1 , 2 ) , let X i be completely regular Hausdorff spaces, E i quasi-complete locally convex spaces, E = E 1 ˘ E 2 , the completion of the their injective tensor product, C b ( X i ) the spaces of all bounded, scalar-valued continuous functions on X i , and μ i E i -valued Baire measures on X i . Under certain...

Properties of Orlicz-Pettis or Nikodym type and barrelledness conditions

Philippe Turpin (1978)

Annales de l'institut Fourier

An Orlicz-Pettis type property for vector measures and also the “Uniform Boundedness Principle” are shown to fail without local convexity assumption. The author asks under which generalized convexity hypotheses these properties remain true. This problem is expressed in terms of barrelledness type conditions.

Radon-Nikodym property

Surjit Singh Khurana (2017)

Commentationes Mathematicae Universitatis Carolinae

For a Banach space E and a probability space ( X , 𝒜 , λ ) , a new proof is given that a measure μ : 𝒜 E , with μ λ , has RN derivative with respect to λ iff there is a compact or a weakly compact C E such that | μ | C : 𝒜 [ 0 , ] is a finite valued countably additive measure. Here we define | μ | C ( A ) = sup { k | μ ( A k ) , f k | } where { A k } is a finite disjoint collection of elements from 𝒜 , each contained in A , and { f k } E ' satisfies sup k | f k ( C ) | 1 . Then the result is extended to the case when E is a Frechet space.

Representation of Itô integrals by Lebesgue/Bochner integrals

Qi Lü, Jiongmin Yong, Xu Zhang (2012)

Journal of the European Mathematical Society

In [Yong 2004], it was proved that as long as the integrand has certain properties, the corresponding Itô integral can be written as a (parameterized) Lebesgue integral (or a Bochner integral). In this paper, we show that such a question can be answered in a more positive and refined way. To do this, we need to characterize the dual of the Banach space of some vector-valued stochastic processes having different integrability with respect to the time variable and the probability measure. The later...

Representation of multilinear operators on C(K, X) spaces.

Ignacio Villanueva (2002)

RACSAM

We present a Riesz type representation theorem for multilinear operators defined on the product of C(K,X) spaces with values in a Banach space. In order to do this we make a brief exposition of the theory of operator valued polymeasures.

Currently displaying 261 – 280 of 388