Construction of the Leray-Schauder degree for elliptic operators in unbounded domains
The Recursive Projection Method is a technique for continuation of both the steady states and the dominant invariant subspaces. In this paper a modified version of the RPM called projected RPM is proposed. The modification underlines the stabilization effect. In order to improve the poor update of the unstable invariant subspace we have applied subspace iterations preconditioned by Cayley transform. A statement concerning the local convergence of the resulting method is proved. Results of numerical...
On donne un critère très simple de continuité des opérateurs définis par des intégrales singulières sur les espaces de Besov homogènes pour . Quelques exemples, utilisant notamment l’opérateur de paraproduit, illustrent ensuite l’emploi de ce critère.
L'objet de ce travail est l'étude de la continuité des opérateurs d'intégrales singulières (au sens de Calderón-Zygmund) sur les espaces de Sobolev Hs. Il complète le travail fondamental de David-Journé [6], concernant le cas s = 0, et ceux de P. G. Lemarié [10] et M. Meyer [11] concernant le cas 0 < s < 1.