Essential supremum norm differentiability.
We study the boundedness of the Hausdorff measure of the singular set of any solution for a semi-linear elliptic equation in general dimensional Euclidean space . In our previous paper, we have clarified the structures of the nodal set and singular set of a solution for the semi-linear elliptic equation. In particular, we showed that the singular set is -rectifiable. In this paper, we shall show that under some additive smoothness assumptions, the -dimensional Hausdorff measure of singular set...
The -convex functions are the viscosity subsolutions to the fully nonlinear elliptic equations , where is the elementary symmetric function of order , , of the eigenvalues of the Hessian matrix . For example, is the Laplacian and is the real Monge-Ampère operator det , while -convex functions and -convex functions are subharmonic and convex in the classical sense, respectively. In this paper, we establish an approximation theorem for negative -convex functions, and give several...
It is shown that maximal truncations of nonconvolution L²-bounded singular integral operators with kernels satisfying Hörmander’s condition are weak type (1,1) and -bounded for 1 < p< ∞. Under stronger smoothness conditions, such estimates can be obtained using a generalization of Cotlar’s inequality. This inequality is not applicable here and the point of this article is to treat the boundedness of such maximal singular integral operators in an alternative way.
We give lower and upper estimates of the capacity of self-similar measures generated by iterated function systems where are bi-lipschitzean transformations.
We consider a class of perturbations of the degenerate Ornstein-Uhlenbeck operator in . Using a revised version of Bernstein’s method we provide several uniform estimates for the semigroup associated with the realization of the operator in the space of all the bounded and continuous functions in
We characterize those homogeneous translation invariant symmetric non-local operators with positive maximum principle whose harmonic functions satisfy Harnack's inequality. We also estimate the corresponding semigroup and the potential kernel.