Displaying 301 – 320 of 374

Showing per page

Fredholm spectrum and growth of cohomology groups

Jörg Eschmeier (2008)

Studia Mathematica

Let T ∈ L(E)ⁿ be a commuting tuple of bounded linear operators on a complex Banach space E and let σ F ( T ) = σ ( T ) σ e ( T ) be the non-essential spectrum of T. We show that, for each connected component M of the manifold R e g ( σ F ( T ) ) of all smooth points of σ F ( T ) , there is a number p ∈ 0, ..., n such that, for each point z ∈ M, the dimensions of the cohomology groups H p ( ( z - T ) k , E ) grow at least like the sequence ( k d ) k 1 with d = dim M.

Frequently hypercyclic semigroups

Elisabetta M. Mangino, Alfredo Peris (2011)

Studia Mathematica

We study frequent hypercyclicity in the context of strongly continuous semigroups of operators. More precisely, we give a criterion (sufficient condition) for a semigroup to be frequently hypercyclic, whose formulation depends on the Pettis integral. This criterion can be verified in certain cases in terms of the infinitesimal generator of the semigroup. Applications are given for semigroups generated by Ornstein-Uhlenbeck operators, and especially for translation semigroups on weighted spaces of...

Frequently hypercyclic translation semigroups

Elisabetta M. Mangino, Marina Murillo-Arcila (2015)

Studia Mathematica

Frequent hypercyclicity for translation C₀-semigroups on weighted spaces of continuous functions is studied. The results are achieved by establishing an analogy between frequent hypercyclicity for translation semigroups and for weighted pseudo-shifts and by characterizing frequently hypercyclic weighted pseudo-shifts on spaces of vanishing sequences. Frequently hypercyclic translation semigroups on weighted L p -spaces are also characterized.

Currently displaying 301 – 320 of 374