Fredholm property for a parameter dependent second order operator differential equation.
Let T ∈ L(E)ⁿ be a commuting tuple of bounded linear operators on a complex Banach space E and let be the non-essential spectrum of T. We show that, for each connected component M of the manifold of all smooth points of , there is a number p ∈ 0, ..., n such that, for each point z ∈ M, the dimensions of the cohomology groups grow at least like the sequence with d = dim M.
We establish the Fredholmness of a pseudo-differential operator whose symbol is of class , , in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).
We study frequent hypercyclicity in the context of strongly continuous semigroups of operators. More precisely, we give a criterion (sufficient condition) for a semigroup to be frequently hypercyclic, whose formulation depends on the Pettis integral. This criterion can be verified in certain cases in terms of the infinitesimal generator of the semigroup. Applications are given for semigroups generated by Ornstein-Uhlenbeck operators, and especially for translation semigroups on weighted spaces of...
Frequent hypercyclicity for translation C₀-semigroups on weighted spaces of continuous functions is studied. The results are achieved by establishing an analogy between frequent hypercyclicity for translation semigroups and for weighted pseudo-shifts and by characterizing frequently hypercyclic weighted pseudo-shifts on spaces of vanishing sequences. Frequently hypercyclic translation semigroups on weighted -spaces are also characterized.