The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 3321 –
3340 of
11160
Using extrapolation spaces introduced by Da Prato-Grisvard and Nagel we prove a non-autonomous perturbation theorem for Hille-Yosida operators. The abstract result is applied to non-autonomous retarded partial differential equations.
Let T be a bounded operator on an infinite-dimensional Banach space X and Ω a compact subset of the semi-Fredholm domain of T. We construct a finite rank perturbation F such that min[dim N(T+F-λ), codim R(T+F-λ)] = 0 for all λ ∈ Ω, and which is extremal in the sense that F² = 0 and rank F = max{min[dim N(T-λ), codim R(T-λ)] : λ ∈ Ω.
Let be the subspace of finite elements of an Orlicz space endowed with the Luxemburg norm. The main theorem says that a compact linear operator is extreme if and only if on a dense subset of , where is a compact Hausdorff topological space and . This is done via the description of the extreme points of the space of continuous functions , being an Orlicz space equipped with the Orlicz norm (conjugate to the Luxemburg one). There is also given a theorem on closedness of the set of extreme...
Currently displaying 3321 –
3340 of
11160