The search session has expired. Please query the service again.

Displaying 4781 – 4800 of 11160

Showing per page

l(Φ,φ) operators and (Φ,φ)-spaces.

Nicolae Tita (1979)

Collectanea Mathematica

A new class of linear and bounded operators is introduced. This class is more general than the classes of operators from [4], [5] and [8]. Using this class lΦ,φ we also introduce a class of locally convex spaces which is more general than the classes of the nuclear spaces [2], [3] and φ-nuclear spaces [6]. For this class of operators similar properties are established to those of the well known classes lp, lφ, lΦ and also the stability of the tensor product is proved. The stability of the tensor...

M -ideals of compact operators into p

Kamil John, Dirk Werner (2000)

Czechoslovak Mathematical Journal

We show for 2 p < and subspaces X of quotients of L p with a 1 -unconditional finite-dimensional Schauder decomposition that K ( X , p ) is an M -ideal in L ( X , p ) .

M ( r , s ) -ideals of compact operators

Rainis Haller, Marje Johanson, Eve Oja (2012)

Czechoslovak Mathematical Journal

We study the position of compact operators in the space of all continuous linear operators and its subspaces in terms of ideals. One of our main results states that for Banach spaces X and Y the subspace of all compact operators 𝒦 ( X , Y ) is an M ( r 1 r 2 , s 1 s 2 ) -ideal in the space of all continuous linear operators ( X , Y ) whenever 𝒦 ( X , X ) and 𝒦 ( Y , Y ) are M ( r 1 , s 1 ) - and M ( r 2 , s 2 ) -ideals in ( X , X ) and ( Y , Y ) , respectively, with r 1 + s 1 / 2 > 1 and r 2 + s 2 / 2 > 1 . We also prove that the M ( r , s ) -ideal 𝒦 ( X , Y ) in ( X , Y ) is separably determined. Among others, our results complete and improve some well-known results...

Majorization of C 0 -semigroups in ordered Banach spaces

Gerd Herzog, Peer Christian Kunstmann (2006)

Commentationes Mathematicae Universitatis Carolinae

We give criteria for domination of strongly continuous semigroups in ordered Banach spaces that are not necessarily lattices, and thus obtain generalizations of certain results known in the lattice case. We give applications to semigroups generated by differential operators in function spaces which are not lattices.

Mappings on some reflexive algebras characterized by action on zero products or Jordan zero products

Yunhe Chen, Jiankui Li (2011)

Studia Mathematica

Let 𝓛 be a subspace lattice on a Banach space X and let δ: Alg𝓛 → B(X) be a linear mapping. If ⋁ {L ∈ 𝓛 : L₋ ⊉ L}= X or ⋁ {L₋ : L ∈ 𝓛, L₋ ⊉ L} = (0), we show that the following three conditions are equivalent: (1) δ(AB) = δ(A)B + Aδ(B) whenever AB = 0; (2) δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A) whenever AB + BA = 0; (3) δ is a generalized derivation and δ(I) ∈ (Alg𝓛)'. If ⋁ {L ∈ 𝓛 : L₋ ⊉ L} = X or ⋁ {L₋ : L ∈ 𝓛, L₋ ⊉ L} = (0) and δ satisfies δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A)...

Mappings preserving zero products

M. A. Chebotar, W.-F. Ke, P.-H. Lee, N.-C. Wong (2003)

Studia Mathematica

Let θ : ℳ → 𝓝 be a zero-product preserving linear map between algebras. We show that under some mild conditions θ is a product of a central element and an algebra homomorphism. Our result applies to matrix algebras, standard operator algebras, C*-algebras and W*-algebras.

Currently displaying 4781 – 4800 of 11160