The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 5501 – 5520 of 11160

Showing per page

On a function that realizes the maximal spectral type

Krzysztof Frączek (1997)

Studia Mathematica

We show that for a unitary operator U on L 2 ( X , μ ) , where X is a compact manifold of class C r , r , ω , and μ is a finite Borel measure on X, there exists a C r function that realizes the maximal spectral type of U.

On a functional equation with derivative and symmetrization

Adam Bobrowski, Małgorzata Kubalińska (2006)

Annales Polonici Mathematici

We study existence, uniqueness and form of solutions to the equation α g - β g ' + γ g e = f where α, β, γ and f are given, and g e stands for the even part of a searched-for differentiable function g. This equation emerged naturally as a result of the analysis of the distribution of a certain random process modelling a population genetics phenomenon.

On a general bidimensional extrapolation problem

Rodrigo Arocena, Fernando Montana (1993)

Colloquium Mathematicae

Several generalized moment problems in two dimensions are particular cases of the general problem of giving conditions that ensure that two isometries, with domains and ranges contained in the same Hilbert space, have commutative unitary extensions to a space that contains the given one. Some results concerning this problem are presented and applied to the extension of functions of positive type.

On a generalization of a Greguš fixed point theorem

Ljubomir B. Ćirić (2000)

Czechoslovak Mathematical Journal

Let C be a closed convex subset of a complete convex metric space X . In this paper a class of selfmappings on C , which satisfy the nonexpansive type condition ( 2 ) below, is introduced and investigated. The main result is that such mappings have a unique fixed point.

On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space

Driss Drissi (1998)

Studia Mathematica

Using [1], which is a local generalization of Gelfand's result for powerbounded operators, we first give a quantitative local extension of Lumer-Philips' result that states conditions under which a quasi-nilpotent dissipative operator vanishes. Secondly, we also improve Lumer-Phillips' theorem on strongly continuous semigroups of contraction operators.

On a generalization of W*-modules

David P. Blecher, Jon E. Kraus (2010)

Banach Center Publications

a recent paper of the first author and Kashyap, a new class of Banach modules over dual operator algebras is introduced. These generalize the W*-modules (that is, Hilbert C*-modules over a von Neumann algebra which satisfy an analogue of the Riesz representation theorem for Hilbert spaces), which in turn generalize Hilbert spaces. In the present paper, we describe these modules, giving some motivation, and we prove several new results about them.

On a Kleinecke-Shirokov theorem

Vasile Lauric (2021)

Czechoslovak Mathematical Journal

We prove that for normal operators N 1 , N 2 ( ) , the generalized commutator [ N 1 , N 2 ; X ] approaches zero when [ N 1 , N 2 ; [ N 1 , N 2 ; X ] ] tends to zero in the norm of the Schatten-von Neumann class 𝒞 p with p > 1 and X varies in a bounded set of such a class.

Currently displaying 5501 – 5520 of 11160