The search session has expired. Please query the service again.
Displaying 61 –
80 of
311
A new variational principle and duality for the problem Lu = ∇G(u) are provided, where L is a positive definite and selfadjoint operator and ∇G is a continuous gradient mapping such that G satisfies superquadratic growth conditions. The results obtained may be applied to Dirichlet problems for both ordinary and partial differential equations.
In 1959, Nikaidô established a remarkable coincidence theorem in a compact Hausdorff topological space, to generalize and to give a unified treatment to the results of Gale regarding the existence of economic equilibrium and the theorems in game problems. The main purpose of the present paper is to deduce several generalized key results based on this very powerful result, together with some KKM property. Indeed, we shall simplify and reformulate a few coincidence theorems on acyclic multifunctions,...
Estimates of the radius of convergence of Newton's methods for variational inclusions in Banach spaces are investigated under a weak Lipschitz condition on the first Fréchet derivative. We establish the linear convergence of Newton's and of a variant of Newton methods using the concepts of pseudo-Lipschitz set-valued map and ω-conditioned Fréchet derivative or the center-Lipschitz condition introduced by the first author.
We use a combination of modified Newton method and Tikhonov regularization to obtain a stable approximate solution for nonlinear ill-posed Hammerstein-type operator equations KF(x) = y. It is assumed that the available data is with , K: Z → Y is a bounded linear operator and F: X → Z is a nonlinear operator where X,Y,Z are Hilbert spaces. Two cases of F are considered: where exists (F’(x₀) is the Fréchet derivative of F at an initial guess x₀) and where F is a monotone operator. The parameter...
We study the existence of nodal solutions of the -point boundary value problem
where
Let be a Banach space of analytic functions on the open unit disk and a subset of linear isometries on . Sufficient conditions are given for non-supercyclicity of . In particular, we show that the semigroup of linear isometries on the spaces (), the little Bloch space, and the group of surjective linear isometries on the big Bloch space are not supercyclic. Also, we observe that the groups of all surjective linear isometries on the Hardy space or the Bergman space (, ) are not supercyclic....
Currently displaying 61 –
80 of
311