Absolutely continuous measures and compact composition operator on spaces of Cauchy transforms.
We study the discrete Schrödinger operator in with the surface quasi periodic potential , where . We first discuss a proof of the pure absolute continuity of the spectrum of on the interval (the spectrum of the discrete laplacian) in the case where the components of are rationally independent. Then we show that in this case the generalized eigenfunctions have the form of the “volume” waves, i.e. of the sum of the incident plane wave and reflected from the hyper-plane waves, the form...
A sequence (xn) in a Banach space X is said to be weakly-p-summable, 1 ≤ p < ∞, when for each x* ∈ X*, (x*xn) ∈ lp. We shall say that a sequence (xn) is weakly-p-convergent if for some x ∈ X, (xn - x) is weakly-p-summable.
In this note we review some results about:1. Representation of Absolutely (∞,p) summing operators (∏∞,p) in C(K,E)2. Dunford-Pettis properties.
As a continuation of the work of Bennett and Carl for the case q = ∞, we consider absolutely (r,p,q)-summing inclusion maps between Minkowski sequence spaces, 1 ≤ p,q ≤ 2. Using these results we deduce parts of the limit orders of the corresponding operator ideals and an inclusion theorem between the ideals of (u,s,t)-nuclear and of absolutely (r,p,q)-summing operators, which gives a new proof of a result of Carl on Schatten class operators. Furthermore, we also consider inclusions between arbitrary...
Let α > 0. By Cα we mean the terraced matrix defined by [...] if 1 ≤ k ≤ n and 0 if k > n. In this paper, we show that a necessary and sufficient condition for the induced operator on lp, to be p-summing, is α > 1; 1 ≤ p < ∞. When the more general terraced matrix B, defined by bnk = βn if 1 ≤ k ≤ n and 0 if k > n, is considered, the necessary and sufficient condition turns out to be [...] in the region 1/p + 1/q ≤ 1.