The search session has expired. Please query the service again.

Displaying 841 – 860 of 1501

Showing per page

About the class of ordered limited operators

A. El Kaddouri, Mohammed Moussa (2013)

Acta Universitatis Carolinae. Mathematica et Physica

We give a brief survey of recent results of order limited operators related to some properties on Banach lattices.

About the generating function of a left bounded integer-valued random variable

Charles Delorme, Jean-Marc Rinkel (2008)

Bulletin de la Société Mathématique de France

We give a relation between the sign of the mean of an integer-valued, left bounded, random variable X and the number of zeros of 1 - Φ ( z ) inside the unit disk, where Φ is the generating function of X , under some mild conditions

A-Browder-type theorems for direct sums of operators

Mohammed Berkani, Mustapha Sarih, Hassan Zariouh (2016)

Mathematica Bohemica

We study the stability of a-Browder-type theorems for orthogonal direct sums of operators. We give counterexamples which show that in general the properties ( SBaw ) , ( SBab ) , ( SBw ) and ( SBb ) are not preserved under direct sums of operators. However, we prove that if S and T are bounded linear operators acting on Banach spaces and having the property ( SBab ) , then S T has the property ( SBab ) if and only if σ SBF + - ( S T ) = σ SBF + - ( S ) σ SBF + - ( T ) , where σ SBF + - ( T ) is the upper semi-B-Weyl spectrum of T . We obtain analogous preservation results for the properties ( SBaw ) , ( SBb ) and ( SBw ) with...

absence de résonance près du réel pour l’opérateur de Schrödinger

Nicolas Burq (1997/1998)

Séminaire Équations aux dérivées partielles

On donne dans cet exposé des bornes inférieures universelles, en limite semiclassique, de la hauteur des résonances de forme associées aux opérateurs de Schrödinger à l’extérieur d’obstacles avec des conditions au bord de Dirichlet ou de Neumann et des potentiels analytiquement dilatables et tendant vers 0 à l’infini. Ces bornes inférieures sont exponentiellement petites par rapport à la constante de Planck.

Absolute continuity for Jacobi matrices with power-like weights

Wojciech Motyka (2007)

Colloquium Mathematicae

This work deals with a class of Jacobi matrices with power-like weights. The main theme is spectral analysis of matrices with zero diagonal and weights λ : = n α ( 1 + Δ ) where α ∈ (0,1]. Asymptotic formulas for generalized eigenvectors are given and absolute continuity of the matrices considered is proved. The last section is devoted to spectral analysis of Jacobi matrices with qₙ = n + 1 + (-1)ⁿ and λ = ( q n - 1 q ) .

Absolutely continuous linear operators on Köthe-Bochner spaces

(2011)

Banach Center Publications

Let E be a Banach function space over a finite and atomless measure space (Ω,Σ,μ) and let ( X , | | · | | X ) and ( Y , | | · | | Y ) be real Banach spaces. A linear operator T acting from the Köthe-Bochner space E(X) to Y is said to be absolutely continuous if | | T ( 1 A f ) | | Y 0 whenever μ(Aₙ) → 0, (Aₙ) ⊂ Σ. In this paper we examine absolutely continuous operators from E(X) to Y. Moreover, we establish relationships between different classes of linear operators from E(X) to Y.

Currently displaying 841 – 860 of 1501