Strong convergence theorems of common fixed points for a family of quasi--nonexpansive mappings.
Let be a nonempty closed convex subset of a real Hilbert space such that , a -strict pseudo-contraction for some such that . Consider the following iterative algorithm given by where is defined by , is the metric projection of onto , is a strongly positive linear bounded self-adjoint operator, is a contraction. It is proved that the sequence generated by the above iterative algorithm converges strongly to a fixed point of , which solves a variational inequality related...
We show that the set of those Markov semigroups on the Schatten class ₁ such that in the strong operator topology , where Q is a one-dimensional projection, form a meager subset of all Markov semigroups.
Let be a positive contraction, with . Assume that is analytic, that is, there exists a constant such that for any integer . Let and let be the space of all complex sequences with a finite strong -variation. We show that for any , the sequence belongs to for almost every , with an estimate . If we remove the analyticity assumption, we obtain an estimate , where denotes the ergodic average of . We also obtain similar results for strongly continuous semigroups of positive...