The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1201 – 1220 of 1501

Showing per page

Analysis and Numerical Approximation of an Electro-elastic Frictional Contact Problem

El. Essoufi, El. Benkhira, R. Fakhar (2010)

Mathematical Modelling of Natural Phenomena

We consider the problem of frictional contact between an piezoelectric body and a conductive foundation. The electro-elastic constitutive law is assumed to be nonlinear and the contact is modelled with the Signorini condition, nonlocal Coulomb friction law and a regularized electrical conductivity condition. The existence of a unique weak solution of the model is established. The finite elements approximation for the problem is presented, and error...

Analysis of lumped parameter models for blood flow simulations and their relation with 1D models

Vuk Milišić, Alfio Quarteroni (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper provides new results of consistence and convergence of the lumped parameters (ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed, lumped parameter models (exploiting the electric circuit analogy for the circulatory system) are shown to discretize continuous 1D models at first order in space. We derive the complete set of equations useful for the blood flow networks, new schemes for electric circuit analogy, the stability criteria that guarantee...

Analysis of lumped parameter models for blood flow simulations and their relation with 1D models

Vuk Milišić, Alfio Quarteroni (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper provides new results of consistence and convergence of the lumped parameters (ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed, lumped parameter models (exploiting the electric circuit analogy for the circulatory system) are shown to discretize continuous 1D models at first order in space. We derive the complete set of equations useful for the blood flow networks, new schemes for electric circuit analogy, the stability criteria that...

Analysis on Extended Heisenberg Group

B. Zegarliński (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper we study Markov semigroups generated by Hörmander-Dunkl type operators on Heisenberg group.

Analytic formulas for the hyperbolic distance between two contractions

Ion Suciu (1997)

Annales Polonici Mathematici

In this paper we give some analytic formulas for the hyperbolic (Harnack) distance between two contractions which permit concrete computations in several situations, including the finite-dimensional case. The main consequence of these formulas is the proof of the Schwarz-Pick Lemma. It modifies those given in [13] by the avoidance of a general Schur type formula for contractive analytic functions, more exactly by reducing the case to the more manageable situation when the function takes as values...

Analytic index formulas for elliptic corner operators

Boris Fedosov, Bert-Wolfgang Schulze, Nikolai Tarkhanov (2002)

Annales de l’institut Fourier

Spaces with corner singularities, locally modelled by cones with base spaces having conical singularities, belong to the hierarchy of (pseudo-) manifolds with piecewise smooth geometry. We consider a typical case of a manifold with corners, the so-called "edged spindle", and a natural algebra of pseudodifferential operators on it with special degeneracy in the symbols, the "corner algebra". There are three levels of principal symbols in the corner algebra, namely the interior,...

Analytic joint spectral radius in a solvable Lie algebra of operators

Daniel Beltiţă (2001)

Studia Mathematica

We introduce the concept of analytic spectral radius for a family of operators indexed by some finite measure space. This spectral radius is compared with the algebraic and geometric spectral radii when the operators belong to some finite-dimensional solvable Lie algebra. We describe several situations when the three spectral radii coincide. These results extend well known facts concerning commuting n-tuples of operators.

Currently displaying 1201 – 1220 of 1501