On type of periodicity and ergodicity to a class of fractional order differential equations.
The paper deals mostly with spectral properties of unbounded hyponormal operators. Some nontrivial examples of such operators are given.
We show that a stochastic operator acting on the Banach lattice of all -integrable functions on is quasi-compact if and only if it is uniformly smoothing (see the definition below).
Consider time-harmonic electromagnetic wave scattering from a biperiodic dielectric structure mounted on a perfectly conducting plate in three dimensions. Given that uniqueness of solution holds, existence of solution follows from a well-known Fredholm framework for the variational formulation of the problem in a suitable Sobolev space. In this paper, we derive a Rellich identity for a solution to this variational problem under suitable smoothness conditions on the material parameter. Under additional...
It is shown that in the Dirichlet space , two invariant subspaces ℳ ₁, ℳ ₂ of the Dirichlet shift are unitarily equivalent only if ℳ ₁ = ℳ ₂.
Given a family of (W) contractions on a reflexive Banach space X we discuss unrestricted sequences . We show that they converge weakly to a common fixed point, which depends only on x and not on the order of the operators if and only if the weak operator closed semigroups generated by are right amenable.
We give an inequality relating the operator norm of T and the numerical radii of T and its Aluthge transform. It is a more precise estimate of the numerical radius than Kittaneh's result [Studia Math. 158 (2003)]. Then we obtain an equivalent condition for the numerical radius to be equal to half the operator norm.
Using the variational approach, we investigate the existence of solutions and their dependence on functional parameters for classical solutions to the second order impulsive boundary value Dirichlet problems with L1 right hand side.
Let be a normed linear space. We investigate properties of vector functions of bounded convexity. In particular, we prove that such functions coincide with the delta-convex mappings admitting a Lipschitz control function, and that convexity is equal to the variation of on . As an application, we give a simple alternative proof of an unpublished result of the first author, containing an estimate of convexity of a composed mapping.
Let be an analytic self-mapping of and an analytic function on . In this paper we characterize the bounded and compact Volterra composition operators from the Bergman-type space to the Bloch-type space. We also obtain an asymptotical expression of the essential norm of these operators in terms of the symbols and .