Approximation of translation invariant operators
Soient et . Il existe une application (non linéaire) normiquement continue de l’espace des opérateurs bornés de dans sur l’espace des opérateurs compacts (resp. faiblement compacts) de dans telle que coïncide avec la distance de au sous-espace formé des opérateurs compacts (resp. faiblement compacts). Pour un opérateur donné de dans on étudie les propriétés de l’ensemble (resp. ) des opérateurs compacts (resp. faiblement compacts) tel que pour tout de (resp. ) la quantité...
Given an operator ideal ℐ, a Banach space E has the ℐ-approximation property if the identity operator on E can be uniformly approximated on compact subsets of E by operators belonging to ℐ. In this paper the ℐ-approximation property is studied in projective tensor products, spaces of linear functionals, spaces of linear operators/homogeneous polynomials, spaces of holomorphic functions and their preduals.
We obtain modular convergence theorems in modular spaces for nets of operators of the form , w > 0, s ∈ G, where G and H are topological groups and is a family of homeomorphisms Such operators contain, in particular, a nonlinear version of the generalized sampling operators, which have many applications in the theory of signal processing.
This paper is devoted to the study of the approximation problem for the abstract hyperbolic differential equation u'(t) = A(t)u(t) for t ∈ [0,T], where A(t):t ∈ [0,T] is a family of closed linear operators, without assuming the density of their domains.
We show that the critical nonlinear elliptic Neumann problem in , in , on , where is a bounded and smooth domain in , has arbitrarily many solutions, provided that is small enough. More precisely, for any positive integer , there exists such that for , the above problem has a nontrivial solution which blows up at interior points in , as . The location of the blow-up points is related to the domain geometry. The solutions are obtained as critical points of some finite-dimensional...