The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
168
We consider the system of operator equations ABA = A² and BAB = B². Let (A,B) be a solution to this system. We give several connections among the operators A, B, AB, and BA. We first prove that A is subscalar of finite order if and only if B is, which is equivalent to the subscalarity of AB or BA with finite order. As a corollary, if A is subscalar and its spectrum has nonempty interior, then B has a nontrivial invariant subspace. We also provide examples of subscalar operator matrices. Moreover,...
We scrutinize the possibility of extending the result of [19] to the case of q-deformed oscillator for q real; for this we exploit the whole range of the deformation parameter as much as possible. We split the case into two depending on whether a solution of the commutation relation is bounded or not. Our leitmotif is subnormality. The deformation parameter q is reshaped and this is what makes our approach effective. The newly arrived parameter, the operator C, has two remarkable properties: it...
An absolute continuity approach to quasinormality which relates the operator in question to the spectral measure of its modulus is developed. Algebraic characterizations of some classes of operators that emerge in this context are found. Various examples and counterexamples illustrating the concepts of the paper are constructed by using weighted shifts on directed trees. Generalizations of these results that cover the case of q-quasinormal operators are established.
We will prove the statement in the title. We also give a better estimate for the hyperreflexivity constant for an analytic Toeplitz operator.
A generalization of the Carleman criterion for selfadjointness of Jacobi matrices to the case of symmetric matrices with finite rows is established. In particular, a new proof of the Carleman criterion is found. An extension of Jørgensen's criterion for selfadjointness of symmetric operators with "almost invariant" subspaces is obtained. Some applications to hyponormal weighted shifts are given.
The purpose of this paper is to give singular integral models for p-hyponormal operators and apply them to the Riemann-Hilbert problem.
Some invariant subspaces for the operators A and T acting on a Hilbert space H and satisfying T*AT ≤ A and A ≥ 0, are presented. Especially, the largest invariant subspace for A and T on which the equality T* AT = A occurs, is studied in connections to others invariant or reducing subspaces for A, or T. Such subspaces are related to the asymptotic form of the subspace quoted above, this form being obtained using the operator limit of the sequence {T*nATn; n ≥ 1}. More complete results are given...
Currently displaying 101 –
120 of
168