The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Quotients of Banach Spaces with the Daugavet Property

Vladimir Kadets, Varvara Shepelska, Dirk Werner (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

We consider a general concept of Daugavet property with respect to a norming subspace. This concept covers both the usual Daugavet property and its weak* analogue. We introduce and study analogues of narrow operators and rich subspaces in this general setting and apply the results to show that a quotient of L₁[0,1] by an ℓ₁-subspace need not have the Daugavet property. The latter answers in the negative a question posed to us by A. Pełczyński.

Quotients of L1 by reflexive subspaces.

Manuel González, Antonio Martínez-Abejón (1997)

Extracta Mathematicae

Here we present and example and some results suggesting that there is no infinite-dimensional reflexive subspace Z of L1 ≡ L1[0,1] such that the quotient L1/Z is isomorphic to a subspace of L1.

Currently displaying 1 – 2 of 2

Page 1