The search session has expired. Please query the service again.

Displaying 341 – 360 of 4417

Showing per page

A singular perturbation problem in exact controllability of the Maxwell system

John E. Lagnese (2001)

ESAIM: Control, Optimisation and Calculus of Variations

This paper studies the exact controllability of the Maxwell system in a bounded domain, controlled by a current flowing tangentially in the boundary of the region, as well as the exact controllability the same problem but perturbed by a dissipative term multiplied by a small parameter in the boundary condition. This boundary perturbation improves the regularity of the problem and is therefore a singular perturbation of the original problem. The purpose of the paper is to examine the connection,...

A Singular Perturbation Problem in Exact Controllability of the Maxwell System

John E. Lagnese (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper studies the exact controllability of the Maxwell system in a bounded domain, controlled by a current flowing tangentially in the boundary of the region, as well as the exact controllability the same problem but perturbed by a dissipative term multiplied by a small parameter in the boundary condition. This boundary perturbation improves the regularity of the problem and is therefore a singular perturbation of the original problem. The purpose of the paper is to examine the connection, for...

A stability theorem in nonlinear bilevel programming.

Shou-Yang Wang, Qian Wang, Luis Coladas Uría (1996)

Qüestiió

In this short paper, we are concerned with the stability of nonlinear bilevel programs. A stability problem is proven and an example is given to illustrate this theorem.

A strongly nonlinear problem arising in glaciology

Jacques Colinge, Jacques Rappaz (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The computation of glacier movements leads to a system of nonlinear partial differential equations. The existence and uniqueness of a weak solution is established by using the calculus of variations. A discretization by the finite element method is done. The solution of the discrete problem is proved to be convergent to the exact solution. A first simple numerical algorithm is proposed and its convergence numerically studied.

A study of a unilateral and adhesive contact problem with normal compliance

Arezki Touzaline (2014)

Applicationes Mathematicae

The aim of this paper is to study a quasistatic unilateral contact problem between an elastic body and a foundation. The constitutive law is nonlinear and the contact is modelled with a normal compliance condition associated to a unilateral constraint and Coulomb's friction law. The adhesion between contact surfaces is taken into account and is modelled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We establish a variational formulation...

A symmetry problem in the calculus of variations

Graziano Crasta (2006)

Journal of the European Mathematical Society

We consider the integral functional J ( u ) = Ω [ f ( | D u | ) u ] d x , u W 0 1 , 1 ( Ω ) , where Ω n , n 2 , is a nonempty bounded connected open subset of n with smooth boundary, and s f ( | s | ) is a convex, differentiable function. We prove that if J admits a minimizer in W 0 1 , 1 ( Ω ) depending only on the distance from the boundary of Ω , then Ω must be a ball.

Currently displaying 341 – 360 of 4417