The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Herein, we develop a backward stochastic differential equation (BSDE) valuation of securities with default risk. Consequently, the optimal recovery problem with quasi-linear utility functions is discussed with the help of the stochastic maximum principle. Finally, two important examples: the exponential and power utility cases are studied and their business implications are considered.
We investigate the value function of the Bolza problem of the
Calculus of Variations
with a lower semicontinuous Lagrangian L and a final cost ,
and
show that it is locally Lipschitz for t>0
whenever L is locally bounded. It also satisfies
Hamilton-Jacobi inequalities in a generalized sense.
When the Lagrangian is continuous, then the value function is the
unique lower semicontinuous solution
to the corresponding Hamilton-Jacobi equation, while for discontinuous
Lagrangian we characterize...
Under an appropriate oscillating behaviour either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem on the Sierpiński gasket is proved. Our approach is based on variational methods and on some analytic and geometrical properties of the Sierpiński fractal. The abstract results are illustrated by explicit examples.
A general framework for calculating shape derivatives for
optimization problems with partial differential equations as
constraints is presented. The proposed technique allows to obtain
the shape derivative of the cost without the necessity to involve
the shape derivative of the state variable. In fact, the state
variable is only required to be Lipschitz continuous with respect
to the geometry perturbations. Applications to inverse interface
problems, and shape optimization for elliptic systems...
This paper presents the variational approach to some optimization problems: Mayer's problem with or without constraints on the final point, local controllability of a trajectory, time-optimal problems.
The aim of this paper is to provide a rigorous variational formulation for the detection of points in 2-d biological images. To this purpose we introduce a new functional whose minimizers give the points we want to detect. Then we define an approximating sequence of functionals for which we prove the Γ-convergence to the initial one.
The aim of this paper is to provide a rigorous variational formulation for
the detection of points in 2-d biological images. To this purpose
we introduce a new functional whose minimizers give the points we want to detect. Then we define an approximating sequence of functionals for
which we prove the Γ-convergence to the initial one.
In this paper we consider a new kind of Mumford–Shah functional E(u, Ω) for maps u : ℝm → ℝn with m ≥ n. The most important novelty is that the energy features a singular set Su of codimension greater than one, defined through the theory of distributional jacobians. After recalling the basic definitions and some well established results, we prove an approximation property for the energy E(u, Ω) via Γ −convergence, in the same spirit of the work by Ambrosio and Tortorelli [L. Ambrosio and V.M. Tortorelli,...
It is shown that the Lagrange's equations for a Lagrangian system on a Lie algebroid are obtained as the equations for the critical points of the action functional defined on a Banach manifold of curves. The theory of Lagrangian reduction and the relation with the method of Lagrange multipliers are also studied.
Small amplitude vibrations of an elastic structure completely filled by a fluid are considered. Describing the structure by displacements and the fluid by its pressure field one arrives at a non-selfadjoint eigenvalue problem. Taking advantage of a Rayleigh functional we prove that its eigenvalues can be characterized by variational principles of Rayleigh, minmax and maxmin type.
We study a variational formulation for a Stefan problem in two adjoining bodies, when the heat conductivity of one of them becomes infinitely large. We study the «concentrated capacity» model arising in the limit, and we justify it by an asymptotic analysis, which is developed in the general framework of the abstract evolution equations of monotone type.
Currently displaying 1 –
20 of
88