The search session has expired. Please query the service again.
This article is the starting point of a series of works whose aim is the study of deterministic control problems where the dynamic and the running cost can be completely different in two (or more) complementary domains of the space ℝN. As a consequence, the dynamic and running cost present discontinuities at the boundary of these domains and this is the main difficulty of this type of problems. We address these questions by using a Bellman approach: our aim is to investigate how to define properly...
The present paper concerns the problem of the flow through a semipermeable membrane of infinite thickness. The semipermeability boundary conditions are first considered to be monotone; these relations are therefore derived by convex superpotentials being in general nondifferentiable and nonfinite, and lead via a suitable application of the saddlepoint technique to the formulation of a multivalued boundary integral equation. The latter is equivalent to a boundary minimization problem with a small...
In this paper, we employ the reduced basis method as a surrogate model for the solution of linear-quadratic optimal control problems governed by parametrized elliptic partial differential equations. We present a posteriori error estimation and dual procedures that provide rigorous bounds for the error in several quantities of interest: the optimal control, the cost functional, and general linear output functionals of the control, state, and adjoint variables. We show that, based on the assumption...
The notion of -stability is defined using the lower Dini directional derivatives and was introduced by the authors in their previous papers. In this paper we prove that the class of -stable functions coincides with the class of C functions. This also solves the question posed by the authors in SIAM J. Control Optim. 45 (1) (2006), pp. 383–387.
We show how to capture the gradient concentration of the solutions of Dirichlet-type problems subjected to large sources of order concentrated on an -neighborhood of a hypersurface of the domain. To this end we define the gradient Young-concentration measures generated by sequences of finite energy and establish a very simple characterization of these measures.
We show how to capture the gradient concentration of the solutions of Dirichlet-type
problems subjected to large sources of order concentrated on an ε-neighborhood of a hypersurface of the domain. To this end we define the
gradient Young-concentration measures generated by sequences of finite energy and establish a very simple
characterization of these measures.
For vector valued maps, convergence in and of all minors of the Jacobian matrix in is equivalent to convergence weakly in the sense of currents and in area for graphs. We show that maps defined on domains of dimension can be approximated strongly in this sense by smooth maps if and only if the same property holds for the restriction to a.e. 2-dimensional plane intersecting the domain.
We consider the question whether the assumption of convexity
of the set involved in Clarke-Ledyaev inequality can be relaxed. In the case
when the point is outside the convex hull of the set we show that Clarke-Ledyaev
type inequality holds if and only if there is certain geometrical relation between the point and the set.
Currently displaying 1 –
20 of
683