The search session has expired. Please query the service again.
The construction of reduced order models for dynamical systems using
proper orthogonal decomposition (POD) is based on the information
contained in so-called snapshots. These provide the spatial
distribution of the dynamical system at discrete time instances.
This work is devoted to optimizing the choice of these time
instances in such a manner that the error between the POD-solution
and the trajectory of the dynamical system is minimized. First and
second order optimality systems are given. Numerical...
In this paper we consider the optimal control of both operators and parameters for uncertain systems. For the optimal control and identification problem, we show existence of an optimal solution and present necessary conditions of optimality.
Advanced building design is a rather new interdisciplinary research branch, combining knowledge from physics, engineering, art and social science; its support from both theoretical and computational mathematics is needed. This paper shows an example of such collaboration, introducing a model problem of optimal heating in a low-energy house. Since all particular function values, needed for optimization are obtained as numerical solutions of an initial and boundary value problem for a sparse system...
We use DiPerna’s and Majda’s generalization of Young measures to describe oscillations and concentrations in sequences of gradients, , bounded in if and is a bounded domain with the extension property in . Our main result is a characterization of those DiPerna-Majda measures which are generated by gradients of Sobolev maps satisfying the same fixed Dirichlet boundary condition. Cases where no boundary conditions nor regularity of are required and links with lower semicontinuity results...
We use DiPerna's and Majda's generalization of Young measures to describe oscillations and concentrations in sequences of gradients, , bounded in
if p > 1 and is a bounded domain with the extension property in .
Our main result is a characterization of those DiPerna-Majda measures which are generated by gradients of Sobolev maps satisfying the same fixed Dirichlet boundary condition. Cases
where no boundary conditions nor regularity of Ω are
required and links with lower semicontinuity...
Currently displaying 81 –
88 of
88