The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study Hamilton-Jacobi equations related to the boundary (or internal) control of semilinear parabolic equations, including the case of a control acting in
a nonlinear boundary condition, or the case of a nonlinearity of Burgers' type in 2D. To deal with a control acting in a boundary condition a fractional power
– where (A,D(A)) is an unbounded operator in a Hilbert space X – is contained in the Hamiltonian functional appearing in the Hamilton-Jacobi equation. This situation has already...
We are concerned with the asymptotic analysis of optimal control problems for -D partial differential equations defined on a periodic planar graph, as the period of the graph tends to zero. We focus on optimal control problems for elliptic equations with distributed and boundary controls. Using approaches of the theory of homogenization we show that the original problem on the periodic graph tends to a standard linear quadratic optimal control problem for a two-dimensional homogenized system, and...
We are concerned with the asymptotic analysis of optimal control
problems for 1-D partial differential equations defined on a
periodic planar graph, as the period of the graph tends to zero. We
focus on optimal control problems for elliptic equations with
distributed and boundary controls. Using approaches of the theory of
homogenization we show that the original problem on the periodic
graph tends to a standard linear quadratic optimal control problem
for a two-dimensional homogenized system,...
We consider quasilinear optimal control problems involving a thick two-level junction Ωε which consists of the junction body Ω0 and a large number of thin cylinders with the cross-section of order 𝒪(ε2). The thin cylinders are divided into two levels depending on the geometrical characteristics, the quasilinear boundary conditions and controls given on their lateral surfaces and bases respectively. In addition, the quasilinear boundary conditions depend on parameters ε, α, β and the...
We consider quasilinear optimal control problems involving a thick two-level junction
Ωε which consists of the junction body
Ω0 and a large number of thin cylinders with the
cross-section of order 𝒪(ε2). The thin cylinders
are divided into two levels depending on the geometrical characteristics, the quasilinear
boundary conditions and controls given on their lateral surfaces and bases respectively.
In addition, the quasilinear boundary...
We consider quasilinear optimal control problems involving a thick two-level junction
Ωε which consists of the junction body
Ω0 and a large number of thin cylinders with the
cross-section of order 𝒪(ε2). The thin cylinders
are divided into two levels depending on the geometrical characteristics, the quasilinear
boundary conditions and controls given on their lateral surfaces and bases respectively.
In addition, the quasilinear boundary...
We homogenize a class of nonlinear differential equations set in highly heterogeneous media. Contrary to the usual approach, the coefficients in the equation characterizing the material properties are supposed to be uncertain functions from a given set of admissible data. The problem with uncertainties is treated by means of the worst scenario method, when we look for a solution which is critical in some sense.
Currently displaying 1 –
8 of
8