The search session has expired. Please query the service again.
This paper is concerned with mathematical modelling in the management of a wastewater treatment system. The problem is formulated as looking for a Nash equilibrium of a multiobjective pointwise control problem of a
parabolic equation. Existence of solution is proved and a first order optimality system is obtained. Moreover, a numerical method to solve this system is detailed and numerical results are shown in a realistic situation posed in the estuary of Vigo (Spain).
We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in -norm and -norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important...
We consider the operator on a complex Hilbert space, where is positive self-adjoint and is self-adjoint, and where, moreover, « is comparable to , », in a technical sense. Two applications are given.
We compute numerically the minimizers of the Dirichlet energyamong maps from the unit disc into the unit sphere that satisfy a boundary condition and a degree condition. We use a Sobolev gradient algorithm for the minimization and we prove that its continuous version preserves the degree. For the discretization of the problem we use continuous finite elements. We propose an original mesh-refining strategy needed to preserve the degree with the discrete version of the algorithm (which is a preconditioned...
In this paper, we prove the global null controllability of
the linear heat equation completed with linear Fourier
boundary conditions of the form
.
We consider distributed controls with support in a small set and
nonregular coefficients .
For the proof of null controllability, a crucial tool will be a new
Carleman estimate for the weak solutions of the classical heat
equation with
nonhomogeneous Neumann boundary conditions.
Shape optimization problems are optimal design problems in which the shape of the boundary plays the role of a design, i.e. the unknown part of the problem. Such problems arise in structural mechanics, acoustics, electrostatics, fluid flow and other areas of engineering and applied science. The mathematical theory of such kind of problems has been developed during the last twelve years. Recently the theory has been extended to cover also situations in which the behaviour of the system is governed...
In the article the following optimal control problem is studied: to determine a certain coefficient in a quasilinear partial differential equation of parabolic type so that the solution of a boundary value problem for this equation would minimise a given integral functional. In addition to the design and analysis of a numerical method the paper contains the solution of the fundamental problems connected with the formulation of the problem in question (existence and uniqueness of the solution of...
In this work we deal with the numerical solution of a
Hamilton-Jacobi-Bellman (HJB) equation with infinitely many
solutions. To compute the maximal solution – the optimal
cost of the original optimal control problem – we present a
complete discrete method based on the use of some finite elements
and penalization techniques.
We deal with practical aspects of an approach to the numerical realization of optimal shape design problems, which is based on a combination of the fictitious domain method with the optimal control approach. Introducing a new control variable in the right-hand side of the state problem, the original problem is transformed into a new one, where all the calculations are performed on a fixed domain. Some model examples are presented.
We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.
We introduce a modification of the Monge–Kantorovitch
problem of exponent 2 which accommodates non balanced initial
and final densities. The augmented Lagrangian numerical method
introduced in [6] is adapted to this “unbalanced”
problem. We illustrate the usability of this method on an
idealized error estimation problem in meteorology.
Currently displaying 1 –
14 of
14