Displaying 2361 – 2380 of 8738

Showing per page

Finitude géométrique en géométrie de Hilbert

Mickaël Crampon, Ludovic marquis (2014)

Annales de l’institut Fourier

On étudie la notion de finitude géométrique pour certaines géométries de Hilbert définies par un ouvert strictement convexe à bord de classe  𝒞 1 .La définition dans le cadre des espaces Gromov-hyperboliques fait intervenir l’action du groupe discret considéré sur le bord de l’espace. On montre, en construisant explicitement un contre-exemple, que cette définition doit être renforcée pour obtenir des définitions équivalentes en termes de la géométrie de l’orbifold quotient, similaires à celles obtenues...

Finitude homotopique et isotopique des structures de contact tendues

Vincent Colin, Emmanuel Giroux, Ko Honda (2009)

Publications Mathématiques de l'IHÉS

Soit V une variété close de dimension 3. Dans cet article, on montre que les classes dhomotopie de champs de plans sur V qui contiennent des structures de contact tendues sont en nombre fini et que, si V est atoroïdale, les classes disotopie des structures de contact tendues sur V sont elles aussi en nombre fini.

Finsler Conformal Lichnerowicz-Obata conjecture

V. S. Matveev, H.-B. Rademacher, M. Troyanov, A. Zeghib (2009)

Annales de l’institut Fourier

We prove the Finsler analog of the conformal Lichnerowicz-Obata conjecture showing that a complete and essential conformal vector field on a non-Riemannian Finsler manifold is a homothetic vector field of a Minkowski metric.

Finsler metrics with propierties of the Kobayashi metric on convex domains.

Myung-Yull Pang (1992)

Publicacions Matemàtiques

The structure of complex Finsler manifolds is studied when the Finsler metric has the property of the Kobayashi metric on convex domains: (real) geodesics locally extend to complex curves (extremal disks). It is shown that this property of the Finsler metric induces a complex foliation of the cotangent space closely related to geodesics. Each geodesic of the metric is then shown to have a unique extension to a maximal totally geodesic complex curve Σ which has properties of extremal disks. Under...

First steps in stable Hamiltonian topology

Kai Cieliebak, Evgeny Volkov (2015)

Journal of the European Mathematical Society

In this paper we study topological properties of stable Hamiltonian structures. In particular, we prove the following results in dimension three: The space of stable Hamiltonian structures modulo homotopy is discrete; stable Hamiltonian structures are generically Morse-Bott (i.e. all closed orbits are Bott nondegenerate) but not Morse; the standard contact structure on S 3 is homotopic to a stable Hamiltonian structure which cannot be embedded in 4 . Moreover, we derive a structure theorem for stable...

First variation of the general curvature-dependent surface energy

Günay Doğan, Ricardo H. Nochetto (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider general surface energies, which are weighted integrals over a closed surface with a weight function depending on the position, the unit normal and the mean curvature of the surface. Energies of this form have applications in many areas, such as materials science, biology and image processing. Often one is interested in finding a surface that minimizes such an energy, which entails finding its first variation with respect to perturbations of the surface. We present a concise derivation...

Currently displaying 2361 – 2380 of 8738