Displaying 2761 – 2780 of 8745

Showing per page

Graph selectors and viscosity solutions on Lagrangian manifolds

David McCaffrey (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Let Λ be a Lagrangian submanifold of T * X for some closed manifold X. Let S ( x , ξ ) be a generating function for Λ which is quadratic at infinity, and let W(x) be the corresponding graph selector for Λ , in the sense of Chaperon-Sikorav-Viterbo, so that there exists a subset X 0 X of measure zero such that W is Lipschitz continuous on X, smooth on X X 0 and ( x , W / x ( x ) ) Λ for X X 0 . Let H(x,p)=0 for ( x , p ) Λ . Then W is a classical solution to H ( x , W / x ( x ) ) = 0 on X X 0 and extends to a Lipschitz function on the whole of X. Viterbo refers to W as a variational...

Grassmann manifold V 3 4 in the projective space P 7 with characteristics consisting of a quadric and two planes

Josef Vala (1993)

Mathematica Bohemica

Some results in the geometry of four-parametric manifolds of three-dimensional spaces in the projective space P 7 are found. The properties of such a manifold V 3 4 with characteristics consisting of a quadric and two planes are studied. The properties of the manifold dual to V 3 4 are found. Some results in the geometry of linear spaces from [1],[2],[3],[4] are used. The notation of the quantities is the same as in [4].

Gromov–Witten invariants for mirror orbifolds of simple elliptic singularities

Ikuo Satake, Atsushi Takahashi (2011)

Annales de l’institut Fourier

We consider a mirror symmetry of simple elliptic singularities. In particular, we construct isomorphisms of Frobenius manifolds among the one from the Gromov–Witten theory of a weighted projective line, the one from the theory of primitive forms for a universal unfolding of a simple elliptic singularity and the one from the invariant theory for an elliptic Weyl group. As a consequence, we give a geometric interpretation of the Fourier coefficients of an eta product considered by K. Saito.

Groupes de Ping-Pong et comptage

Xavier Thirion (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cet article, nous étudions les propriétés asymptotiques d’une large classe de sous-groupe discrets du groupe linéaire réel : les groupes de Ping-Pong. Nous décrivons leur action sur l’espace projectif réel et le comportement à l’infini de leur fonction de comptage.

Groupes de Schottky et comptage

Jean-François Quint (2005)

Annales de l’institut Fourier

Soient X un espace symétrique de type non compact et Γ un groupe discret d’isométries de X du type de Schottky. Dans cet article, nous donnons des équivalents des fonctions orbitales de comptage pour l’action de Γ sur X .

Groupes du ping-pong et géodésiques fermées en courbure -1

Françoise Dal'bo, Marc Peigné (1996)

Annales de l'institut Fourier

Nous considérons une famille de groupes libres et discrets d’isométries orientées agissant sur la boule hyperbolique 𝔹 d et contenant des transformations paraboliques; nous démontrons que le nombre de géodésiques fermées de 𝔹 d / Γ de longueur au plus a est équivalent à e a δ a δ , où δ désigne l’exposant critique de la série de Poincaré.

Groupoïdes riemanniens.

E. Gallego, L. Gualandri, G. Héctor, A. Reventós (1989)

Publicacions Matemàtiques

We propose a definition of a Riemannian groupoid, and we show that the Stefan foliation that it induces is a Riemannian (singular) foliation. We also prove that the homotopy groupoid of a Riemannian (regular) foliation is a Riemannian groupoid.

Currently displaying 2761 – 2780 of 8745