Integration of a density and the fiber integral for regular Lie algebroids in a nonorientable case
This paper develops various estimates for solutions of a nonlinear, fouth order PDE which corresponds to prescribing the scalar curvature of a toric Kähler metric. The results combine techniques from Riemannian geometry and from the theory of Monge-Ampère equations.
In recent years the study of interpolation of Banach spaces has seen some unexpected interactions with other fields. (...) In this paper I shall discuss some more interactions of interpolation theory with the rest of mathematics, beginning with some joint work with Coifman [CS]. Our basic idea was to look for the methods of interpolation that had interesting PDE's arising as examples.
We present a way of thinking of exponential farnilies as geodesic surfaces in the class of positive functions considered as a (multiplicative) sub-group G+ of the group G of all invertible elements in the algebra A of all complex bounded functions defined on a measurable space. For that we have to study a natural geometry on that algebra. The class D of densities with respect to a given rneasure will happen to be representatives of equivalence classes defining a projective space in A. The natural...
Beaucoup de concepts sur les tissus n’ont été étudiés que localement. Il apparaît que certains d’entre eux se laissent globaliser, mais pas toujours de façon immédiate. Le premier objectif de cet article est de préciser à chaque fois ce qu’il en est, et de mettre en place les outils utiles à une étude globale des tissus sur une surface holomorphe arbitraire, et en particulier sur le plan projectif complexe . Certains concepts nouveaux vont alors apparaître, tels le type (ou le degré si ), la...