Lectures on groups of symplectomorphisms
For any two continuous maps , between two solvmanifolds of the same dimension satisfying the Mostow condition, we give a technique of computation of the Lefschetz coincidence number of , . This result is an extension of the result of Ha, Lee and Penninckx for completely solvable case.
In 1997, Chekanov gave the first example of a Legendrian nonsimple knot type: the knot. Epstein, Fuchs, and Meyer extended his result by showing that there are at least different Legendrian representatives with maximal Thurston-Bennequin number of the twist knot with crossing number . In this paper we give a complete classification of Legendrian and transverse representatives of twist knots. In particular, we show that has exactly Legendrian representatives with maximal Thurston–Bennequin...
We consider surfaces in hyperbolic 3-space and their duals. We study flat dual surfaces in hyperbolic 3-space by using extended Legendrian dualities between pseudo-hyperspheres in Lorentz-Minkowski 4-space. We define the flatness of a surface in hyperbolic 3-space by the degeneracy of its dual, which is similar to the case of the Gauss map of a surface in Euclidean 3-space. Such surfaces are a kind of ruled surfaces. Moreover, we investigate the singularities of these surfaces and the dualities...
In this paper we clarify the relationship between ribbon surfaces of Legendrian graphs and quasipositive diagrams by using certain fence diagrams. As an application, we give an alternative proof of a theorem concerning a relationship between quasipositive fiber surfaces and contact structures on . We also answer a question of L. Rudolph concerning moves of quasipositive diagrams.
Regular Poisson structures with fixed characteristic foliation F are described by means of foliated symplectic forms. Associated to each of these structures, there is a class in the second group of foliated cohomology H2(F). Using a foliated version of Moser's lemma, we study the isotopy classes of these structures in relation with their cohomology class. Explicit examples, with dim F = 2, are described.
In this note we consider the length minimizing properties of Hamiltonian paths generated by quasi-autonomous Hamiltonians on symplectically aspherical manifolds. Motivated by the work of Polterovich and Schwarz, we study the role, in the Floer complex of the generating Hamiltonian, of the global extrema which remain fixed as the time varies. Our main result determines a natural condition which implies that the corresponding path minimizes the positive Hofer length. We use this to prove that a quasi-autonomous Hamiltonian...
In this paper the length of a curve on a Lipschitz Riemannian manifold is defined. It is shown that the above definition is consistent with the definition of the geodesic distance already introduced by the authors, both in a geometrical and analytical way.
In the presented paper we apply the theory of Lepage forms on jet prolongations of fibred manifold with one-dimensional base to the relativistic mechanics. Using this geometrical theory, we obtain and discuss some well-known conservation laws in their general form and apply them to a concrete physical example.