Displaying 3761 – 3780 of 8747

Showing per page

Maximal Hamiltonian tori for polygon spaces

Jean-Claude Hausmann, Susan Tolman (2003)

Annales de l’institut Fourier

We study the poset of Hamiltonian tori for polygon spaces. We determine some maximal elements and give examples where maximal Hamiltonian tori are not all of the same dimension.

Maximal rationally connected fibrations and movable curves

Luis E. Solá Conde, Matei Toma (2009)

Annales de l’institut Fourier

A well known result of Miyaoka asserts that a complex projective manifold is uniruled if its cotangent bundle restricted to a general complete intersection curve is not nef. Using the Harder-Narasimhan filtration of the tangent bundle, it can moreover be shown that the choice of such a curve gives rise to a rationally connected foliation of the manifold. In this note we show that, conversely, a movable curve can be found so that the maximal rationally connected fibration of the manifold may be recovered...

Maxwell strata in sub-Riemannian problem on the group of motions of a plane

Igor Moiseev, Yuri L. Sachkov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The left-invariant sub-Riemannian problem on the group of motions of a plane is considered. Sub-Riemannian geodesics are parameterized by Jacobi's functions. Discrete symmetries of the problem generated by reflections of pendulum are described. The corresponding Maxwell points are characterized, on this basis an upper bound on the cut time is obtained.

Currently displaying 3761 – 3780 of 8747