The search session has expired. Please query the service again.
Displaying 481 –
500 of
864
We study the stability of singular points for smooth Poisson structures as well as general Lie algebroids. We give sufficient conditions for stability lying on the first-order approximation (not necessarily linear) of a given Poisson structure or Lie algebroid at a singular point. The main tools used here are the classical Lichnerowicz-Poisson cohomology and the deformation cohomology for Lie algebroids recently introduced by Crainic and Moerdijk. We also provide several examples of stable singular...
In this paper we firstly define a tangential Lichnerowicz cohomology on foliated manifolds. Next, we define tangential locally conformal symplectic forms on a foliated manifold and we formulate and prove some results concerning their stability.
We study the stability of the geodesic flow as a critical point for the energy functional when the base space is a compact orientable quotient of a two-point homogeneous space.
We prove the existence of many constant mean curvature surfaces of revolution with two ends which are immersed or embedded in hyperbolic space. We also study their stability.
On a -dimensional compact symplectic manifold, we consider a smooth family of compatible almost-complex structures such that at time zero the induced metric is Hermite-Einstein almost-Kähler metric with zero or negative Hermitian scalar curvature. We prove, under certain hypothesis, the existence of a smooth family of compatible almost-complex structures, diffeomorphic at each time to the initial one, and inducing constant Hermitian scalar curvature metrics.
A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures that have opposite...
We study the stability of harmonic maps between Finsler manifolds and Riemannian manifolds with positive Ricci curvature, and we prove that if Mⁿ is a compact Einstein Riemannian minimal submanifold of a Riemannian unit sphere with Ricci curvature satisfying , then there is no non-degenerate stable harmonic map between M and any compact Finsler manifold.
Currently displaying 481 –
500 of
864