On the Gauss-Manin Connection of an Isolated Hypersurface Singularity.
Let be a compact manifold let be a finite group acting freely on , and let be the (Fréchet) space of -invariant metric on . A natural conjecture is that, for a generic metric in , all eigenspaces of the Laplacian are irreducible (as orthogonal representations of ). In physics terminology, no “accidental degeneracies” occur generically. We will prove this conjecture when dim dim for all irreducibles of . As an application, we construct isospectral manifolds with simple eigenvalue...
The purpose of this paper is to reconsider the genesis of the concept of covariant differentiation, which is interpreted as arising out of two traditions running through 19th-century research work. While the first tradition, of an algebraic nature, was responsible for the “algorithmic” emergence of the concept, the second, analytical in character, was essentially concerned with the import of covariant differentiation as a broader kind of differentiation. The methodological contrast that these two...
En este artículo se considera un marco general para la precuantización geométrica de una variedad provista de un corchete que no es necesariamente de Jacobi. La existencia de una foliación generalizada permite definir una noción de fibrado de precuantización. Se estudia una aproximación alternativa suponiendo la existencia de un algebroide de Lie sobre la variedad. Se relacionan ambos enfoques y se recuperan los resultados conocidos para variedades de Poisson y Jacobi.
In [20] the existence of major differences about totally geodesic two-dimensional foliations between Riemannian and Lorentzian geometry of the Heisenberg group is proved. Our aim in this paper is to obtain a comparison on some other geometrical properties of these spaces. Interesting behaviours are found. Also the non-existence of left-invariant Ricci and Yamabe solitons and the existence of algebraic Ricci soliton in both Riemannian and Lorentzian cases are proved. Moreover, all of the descriptions...