Displaying 1021 – 1040 of 1190

Showing per page

On the spectral theory and dynamics of asymptotically hyperbolic manifolds

Julie Rowlett (2010)

Annales de l’institut Fourier

We present a brief survey of the spectral theory and dynamics of infinite volume asymptotically hyperbolic manifolds. Beginning with their geometry and examples, we proceed to their spectral and scattering theories, dynamics, and the physical description of their quantum and classical mechanics. We conclude with a discussion of recent results, ideas, and conjectures.

On the spectrum of Riemannian submersions with totally geodesic fibers

Gérard Besson, Manlio Bordoni (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note we give a rule to compute explicitely the spectrum and the eigenfunctions of the total space of a Riemannian submersion with totally geodesic fibers, in terms of the spectra and eigenfunctions of the typical fiber and any associated principal bundle.

On the structure constants of certain Hecke algebras

Helversen-Pasotto, Anna (1991)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0742.00067.]In the first part some general results on Hecke algebras are recalled; the structure constants corresponding to the standard basis are defined; in the following the example of the commuting algebra of the Gelfand- Graev representation of the general linear group G L ( 2 , F ) is examined; here F is a finite field of q elements; the structure constants are explicitly determined first for the standard basis and then for a new basis obtained via a Mellin-transformation....

Currently displaying 1021 – 1040 of 1190