The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
8747
The space of the torsion (0,3)-tensors of the linear connections on almost contact manifolds with B-metric is decomposed in 15 orthogonal and invariant subspaces with respect to the action of the structure group. Three known connections, preserving the structure, are characterized regarding this classification.
We consider paraKähler Lie algebras, that is, even-dimensional Lie algebras g equipped with a pair (J, g), where J is a paracomplex structure and g a pseudo-Riemannian metric, such that the fundamental 2-form Ω(X, Y) = g(X, JY) is symplectic. A complete classification is obtained in dimension four.
Introduction: This article will present just one example of a general construction known as the Bernstein-Gelfand-Gelfand (BGG) resolution. It was the motivating example from two lectures on the BGG resolution given at the 19th Czech Winter School on Geometry and Physics held in Srní in January 1999. This article may be seen as a technical example to go with a more elementary introduction which will appear elsewhere [M. Eastwood, Notices Am. Math. Soc. 46, No. 11, 1368-1376 (1999)]. In fact, there...
Simple computations support the conjecture that a small spherical surface with its center on a minimal surface cannot be divided by the minimal surface into two portions with different area.
Summary: The Ado theorem is a fundamental fact, which has a reputation of being a `strange theorem'. We give its natural proof.
Currently displaying 101 –
120 of
8747