Displaying 1881 – 1900 of 8738

Showing per page

Diffuse-interface treatment of the anisotropic mean-curvature flow

Michal Beneš (2003)

Applications of Mathematics

We investigate the motion by mean curvature in relative geometry by means of the modified Allen-Cahn equation, where the anisotropy is incorporated. We obtain the existence result for the solution as well as a result concerning the asymptotical behaviour with respect to the thickness parameter. By means of a numerical scheme, we can approximate the original law, as shown in several computational examples.

Dilations associated to flat curves.

Stephen Wainger (1991)

Publicacions Matemàtiques

I would like to give an exposition of the recent work of Tony Carbery, Mike Christ, Jim Vance, David Watson and myself concerning Hilbert transforms and Maximal functions along curves in R2 [CCVWW].

Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces

Zoltán M. Balogh, Jeremy T. Tyson, Kevin Wildrick (2013)

Analysis and Geometry in Metric Spaces

We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the...

Dimers and cluster integrable systems

Alexander B. Goncharov, Richard Kenyon (2013)

Annales scientifiques de l'École Normale Supérieure

We show that the dimer model on a bipartite graph Γ on a torus gives rise to a quantum integrable system of special type, which we call acluster integrable system. The phase space of the classical system contains, as an open dense subset, the moduli space Ł Γ of line bundles with connections on the graph Γ . The sum of Hamiltonians is essentially the partition function of the dimer model. We say that two such graphs Γ 1 and Γ 2 areequivalentif the Newton polygons of the corresponding partition functions...

Dirac and Plateau billiards in domains with corners

Misha Gromov (2014)

Open Mathematics

Groping our way toward a theory of singular spaces with positive scalar curvatures we look at the Dirac operator and a generalized Plateau problem in Riemannian manifolds with corners. Using these, we prove that the set of C 2-smooth Riemannian metrics g on a smooth manifold X, such that scalg(x) ≥ κ(x), is closed under C 0-limits of Riemannian metrics for all continuous functions κ on X. Apart from that our progress is limited but we formulate many conjectures. All along, we emphasize geometry,...

Dirac operators on hypersurfaces

Jarolím Bureš (1993)

Commentationes Mathematicae Universitatis Carolinae

In this paper some relation among the Dirac operator on a Riemannian spin-manifold N , its projection on some embedded hypersurface M and the Dirac operator on M with respect to the induced (called standard) spin structure are given.

Dirac structures and dynamical r -matrices

Zhang-Ju Liu, Ping Xu (2001)

Annales de l’institut Fourier

The purpose of this paper is to establish a connection between various objects such as dynamical r -matrices, Lie bialgebroids, and Lagrangian subalgebras. Our method relies on the theory of Dirac structures and Courant algebroids. In particular, we give a new method of classifying dynamical r -matrices of simple Lie algebras 𝔤 , and prove that dynamical r -matrices are in one-one correspondence with certain Lagrangian subalgebras of 𝔤 𝔤 .

Currently displaying 1881 – 1900 of 8738