The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 25 of 25

Showing per page

Two-dimensional curvature functionals with superquadratic growth

Ernst Kuwert, Tobias Lamm, Yuxiang Li (2015)

Journal of the European Mathematical Society

For two-dimensional, immersed closed surfaces f : Σ n , we study the curvature functionals p ( f ) and 𝒲 p ( f ) with integrands ( 1 + | A | 2 ) p / 2 and ( 1 + | H | 2 ) p / 2 , respectively. Here A is the second fundamental form, H is the mean curvature and we assume p > 2 . Our main result asserts that W 2 , p critical points are smooth in both cases. We also prove a compactness theorem for 𝒲 p -bounded sequences. In the case of p this is just Langer’s theorem [16], while for 𝒲 p we have to impose a bound for the Willmore energy strictly below 8 π as an additional condition....

Currently displaying 21 – 25 of 25

Previous Page 2