The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study vanishing theorems for Killing vector fields on complete stable hypersurfaces in a hyperbolic space . We derive vanishing theorems for Killing vector fields with bounded L²-norm in terms of the bottom of the spectrum of the Laplace operator.
In this paper, for complete Riemannian manifolds with radial Ricci or sectional curvature bounded from below or above, respectively, with respect to some point, we prove several volume comparison theorems, which can be seen as extensions of already existing results. In fact, under this radial curvature assumption, the model space is the spherically symmetric manifold, which is also called the generalized space form, determined by the bound of the radial curvature, and moreover, volume comparisons...
Nous étudions des analogues en dimension supérieure de l’inégalité de Burago , avec une surface fermée de classe immergée dans , son
aire et sa courbure totale. Nous donnons un exemple explicite qui prouve qu’une
inégalité analogue de la forme , avec une
constante, ne peut être vraie pour une hypersurface fermée de classe dans
, . Nous mettons toutefois en évidence une condition suffisante
sur la courbure de Ricci sous laquelle l’inégalité est vérifiée en dimension . En
dimension...
Currently displaying 1 –
4 of
4