The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present short direct proofs of two known properties of complete flat manifolds. They say that the diffeomorphism classes of m-dimensional complete flat manifolds form a finite set and that each element of is represented by a manifold with finite holonomy group.
A Stiefel manifold is the set of orthonormal -frames in , and it is diffeomorphic to the homogeneous space . We study -invariant Einstein metrics on this space. We determine when the standard metric on is Einstein, and we give an explicit solution to the Einstein equation for the space .
Currently displaying 1 –
9 of
9