The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
        
      
        
	
	
        
    
		
			
			
                                             
                
                    
                    
                
                
    			
    				
                    
    	            
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We consider almost-complex structures on  whose total Chern classes differ from that of the standard (integrable) almost-complex structure. E. Thomas established the existence of many such structures. We show that if there exists an “exotic” integrable almost-complex structures, then the resulting complex manifold would have specific Hodge numbers which do not vanish. We also give a necessary condition for the nondegeneration of the Frölicher spectral sequence at the second level.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We study global properties of the twistor space over an even dimensional conformally flat manifold, proving that the twistor space is Kähler if and only if the manifold is conformally equivalent to the standard -dimensional sphere ().
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    			
    			 
 
    			
    				Currently displaying 1 – 
                                        3 of 
                                        3