The search session has expired. Please query the service again.
Displaying 301 –
320 of
674
A space is said to have the Rothberger property (or simply is Rothberger) if for every sequence of open covers of , there exists for each such that . For any , necessary and sufficient conditions are obtained for to have the Rothberger property when is a Mrówka mad family and, assuming CH (the Continuum Hypothesis), we prove the existence of a maximal almost disjoint family for which the space is Rothberger for all .
We study the set functions 𝓣 and 𝒦 on irreducible continua. We present several properties of these functions when defined on irreducible continua. In particular, we characterize the class of irreducible continua for which these functions are continuous. We also characterize the class of 𝒦-symmetric irreducible continua.
We discuss the existence of an uncountable strongly chaotic set of a continuous self-map on a compact metric space. It is proved that if a continuous self-map on a compact metric space has a regular shift invariant set then it has an uncountable strongly chaotic set in which each point is recurrent, but is not almost periodic.
Currently displaying 301 –
320 of
674