Displaying 321 – 340 of 674

Showing per page

The sizes of relatively compact T 1 -spaces

Winfried Just (1996)

Commentationes Mathematicae Universitatis Carolinae

The relativization of Gryzlov’s theorem about the size of compact T 1 -spaces with countable pseudocharacter is false.

The solenoids are the only circle-like continua that admit expansive homeomorphisms

Christopher Mouron (2009)

Fundamenta Mathematicae

A homeomorphism h:X → X of a compactum X is expansive provided that for some fixed c > 0 and any distinct x, y ∈ X there exists an integer n, dependent only on x and y, such that d(hⁿ(x),hⁿ(y)) > c. It is shown that if X is a circle-like continuum that admits an expansive homeomorphism, then X is homeomorphic to a solenoid.

The space of ANR’s in n

Tadeusz Dobrowolski, Leonard Rubin (1994)

Fundamenta Mathematicae

The hyperspaces A N R ( n ) and A R ( n ) in 2 n ( n 3 ) consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute G δ σ δ -spaces and that, indeed, they are not F σ δ σ -spaces. The main result is that A N R ( n ) is an absorber for the class of all absolute G δ σ δ -spaces and is therefore homeomorphic to the standard model space Ω 3 of this class.

The Spaces of Closed Convex Sets in Euclidean Spaces with the Fell Topology

Katsuro Sakai, Zhongqiang Yang (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Let C o n v F ( ) be the space of all non-empty closed convex sets in Euclidean space ℝ ⁿ endowed with the Fell topology. We prove that C o n v F ( ) × Q for every n > 1 whereas C o n v F ( ) × .

Currently displaying 321 – 340 of 674