Displaying 341 – 360 of 1528

Showing per page

On continuity of measurable group representations and homomorphisms

Yulia Kuznetsova (2012)

Studia Mathematica

Let G be a locally compact group, and let U be its unitary representation on a Hilbert space H. Endow the space ℒ(H) of bounded linear operators on H with the weak operator topology. We prove that if U is a measurable map from G to ℒ(H) then it is continuous. This result was known before for separable H. We also prove that the following statement is consistent with ZFC: every measurable homomorphism from a locally compact group into any topological group is continuous.

On continuous actions commutingwith actions of positive entropy

Mark Shereshevsky (1996)

Colloquium Mathematicae

Let F and G be finitely generated groups of polynomial growth with the degrees of polynomial growth d(F) and d(G) respectively. Let S = S f f F be a continuous action of F on a compact metric space X with a positive topological entropy h(S). Then (i) there are no expansive continuous actions of G on X commuting with S if d(G)

On continuous extension of uniformly continuous functions and metrics

T. Banakh, N. Brodskiy, I. Stasyuk, E. D. Tymchatyn (2009)

Colloquium Mathematicae

We prove that there exists a continuous regular, positive homogeneous extension operator for the family of all uniformly continuous bounded real-valued functions whose domains are closed subsets of a bounded metric space (X,d). In particular, this operator preserves Lipschitz functions. A similar result is obtained for partial metrics and ultrametrics.

On continuous self-maps and homeomorphisms of the Golomb space

Taras O. Banakh, Jerzy Mioduszewski, Sławomir Turek (2018)

Commentationes Mathematicae Universitatis Carolinae

The Golomb space τ is the set of positive integers endowed with the topology τ generated by the base consisting of arithmetic progressions { a + b n : n 0 } with coprime a , b . We prove that the Golomb space τ has continuum many continuous self-maps, contains a countable disjoint family of infinite closed connected subsets, the set Π of prime numbers is a dense metrizable subspace of τ , and each homeomorphism h of τ has the following properties: h ( 1 ) = 1 , h ( Π ) = Π , Π h ( x ) = h ( Π x ) , and h ( x ) = h ( x ) for all x . Here x : = { x n : n } and Π x denotes the set of prime divisors...

On continuous surjections from Cantor set.

Félix Cabello Sánchez (2004)

Extracta Mathematicae

It is a famous result of Alexandroff and Urysohn that every compact metric space is a continuous image of a Cantor set ∆. In this short note we complement this result by showing that a certain uniqueness property holds. Namely, if (K,d) is a compact metric space and f and g are two continuous mappings from ∆ onto K, the, for every e > 0 there exists a homeomorphism phi of ∆ such that d(g(x), f(phi(x))) < e for all x∆.

Currently displaying 341 – 360 of 1528