A metrization theorem for the product of ordered continua
Let G(X) denote the smallest (von Neumann) regular ring of real-valued functions with domain X that contains C(X), the ring of continuous real-valued functions on a Tikhonov topological space (X,τ). We investigate when G(X) coincides with the ring of continuous real-valued functions on the space , where is the smallest Tikhonov topology on X for which and is von Neumann regular. The compact and metric spaces for which are characterized. Necessary, and different sufficient, conditions...
The main purpose of this paper is to give a new approach for partial metric spaces. We first provide the new concept of KM-fuzzy partial metric, as an extension of both the partial metric and KM-fuzzy metric. Then its relationship with the KM-fuzzy quasi-metric is established. In particularly, we construct a KM-fuzzy quasi-metric from a KM-fuzzy partial metric. Finally, after defining the notion of partial pseudo-metric systems, a one-to-one correspondence between partial pseudo-metric systems and...
We give a sufficient and necessary condition for a Radon-Nikodým compact space to be Eberlein compact in terms of a separable fibre connecting weak-* and norm approximation.
In this paper a new class of self-mappings on metric spaces, which satisfy the nonexpensive type condition (3) below is introduced and investigated. The main result is that such mappings have a unique fixed point. Also, a remetrization theorem, which is converse to Banach contraction principle is given.
A class of Banach spaces, countably determined in their weak topology (hence, WCD spaces) is defined and studied; we call them strongly weakly countably determined (SWCD) Banach spaces. The main results are the following: (i) A separable Banach space not containing ℓ¹(ℕ) is SWCD if and only if it has separable dual; thus in particular, not every separable Banach space is SWCD. (ii) If K is a compact space, then the space C(K) is SWCD if and only if K is countable.
In this paper we define and investigate a new subclass of those Banach spaces which are -analytic in their weak topology; we call them strongly weakly -analytic (SWKA) Banach spaces. The class of SWKA Banach spaces extends the known class of strongly weakly compactly generated (SWCG) Banach spaces (and their subspaces) and it is related to that in the same way as the familiar classes of weakly -analytic (WKA) and weakly compactly generated (WCG) Banach spaces are related. We show that: (i) not...